
UNCLASSIFIED

AD1 296 2.05

ARMED SERVICES TECHNICAL INFORMAON AGENCY
ARLINGTON HALL STATION
ARLIMNC 12, VIRGINIA

UNCLASSIFIED,



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have fonmlated, furnished. or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that =y in any way be related
thereto.



- . BS D -w 62- Ss

:EILO01 &2qAL1.jr9IS OFV THE INMEA-R.IZED
MdETHOD3: OFr CHAURIACTE~nV2TIC8 V401

NOIQUILIBRIUM FLOW~

J. T. Lee
A. 0. Hammitt

" 1W MAT 2.U@U

Contract No. AF 04(694).1
Prepared for
AFBMD AIR R&D COMMAND

V j Inglewood, California

O SPACE TECHNOLOGY LABORATORIES, INC.

A SUISIDIARY OF THOMPSON RAMO WOOLDRIDGE INC.
ONE SPACE PARK * REDONDO BEACH, CALIFORNIA



BSD-TDR-62- I IG

ERROR ANALYSIS OF THE LINEARIZED METHOD OF

CHARACTERISTICS FOR NONEQUILIBRIUM FLOW

Prepared by

J. T. Lee, Jr.

and

A. G. Hammitt

SPACE TECHNOLOGY LABORATORIES, INC.
Los Angeles, California

6130-6184-KU000

Contract No. AF 04(694)-1

18 May 1962

Prepared for

HQ BALLISTIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
Air Force Unit Post Office, Los Angeles 45, California

Attention: TDC



Prepared for
HQ BALLISTIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND, USAF
Under Contract AF 04(694)-i

Prepared . j < 7
J. T. Lee, Jr.
Aerosciences Laboratory
Research Staff

Prepared

Aerosciences Laboratory
Research Staff

Approved 6 j14-t
.R. Sellars, ifrector

L//Aero sciences Laboratory

SPACE TECHNOLOGY LABORATORIES, INC.
A Subsidiary of Thompson Ramo Wooldrdige, Inc.

One Space Park • Redondo Beach, California



ABSTRACT

The pressure on an infinite sinusoidal wall in steady

two-dimensional supersonic flow of an inviscid gas in vibrational

or chemical nonequilibrium is obtained by the linearized method

of characteristics and compared to the analytical solution of the

linearized equations previously obtained by Vincenti. The system

of "frozen" characteristics is used. At near-equilibrium con-

ditions the error in the method of characteristics is due entirely

to the error in integrating the rate equation along the stream-

lines and can be made arbitrarily small by decreasing the size

of the characteristic net. There appears to be no approximate

criteria for reducing the error at near-equilibrium conditions

by switching over to the system of equilibrium characteristics

which are applicable to the entire flow field.
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SYMBOLS

A parameter defined by Equation (15)

c specific heat at constant pressure

c. vibrational heat capacity

D, E parameters defined by Equations (26) and (27)

h enthalpy

k rate parameter defined by Equation (it)

K, i,.s parameters in Taylor series expansion of error terms

I characteristic dimension of flow field; wavelength of
sinusoidal wall

M Mach number

p pressure

P pressure coefficient

q quantity describing vibrational or chemical state of gas

local equilibrium value of q

R gas constant

T temperature

T. vibrational temperature
1

u, v x, y Velocity components

U free-stream velocity

x coordinate parallel to wall

y coordinate normal to wall

Ax measure of size of characteristic net

4 p, dql, W error terms

tp ,maximum difference between equilibrium and frozen
pressure along wall
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GREEK SYMBOLS

a Mach angle

6, X parameters defined by Equation (10)

E amplitude of sinusoidal wall

p density

T relaxation time

*initial value of x for characteristic calculations

SUBSCRIPTS

a value taken from Vincenti's analytical solution

c value obtained by method of characteristics

e equilibrium value

F frozen value

00 free-stream conditions

1,2, 3 values at points 1, 2, 3 (see Figure 1)

SUPERSCRIPTS

perturbation quantity

(n) value after n iterations

* reference quantity
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1. INTRODUCTION

The phenomena of wave propagation and the existence of characteristic

surfaces in nonequilibrium flow have been studied by several investigators

(e. g., References I and 2). It has been well established that character-

istics exist for supersonic steady flow and are determined by the frozen

speed of sound for all finite values of the reaction rate regardless of how

large the reaction rate becomes. When the reaction rate becomes infinite,

however, the characteristics are determined by the equilibrium speed of

sound. This discontinuous change in the identity of the characteristics is

related to a reduction in the order of the governing differential equations

for an infinite reaction rate. It has been shown, however, that the ana-

lytic solution for a flow field is a continuous function of reaction rate

(e. g., References 2 and 3). Thus a near equilibrium solution approaches

the usual equilibrium solution as the reaction rate approaches infinity.

If it is desired to set up a calculation procedure based upon the

method of characteristics that will be valid for all reaction rates the sys-

tem of frozen characteristics must be used. Since only finite reaction

rates are physically possible anyway, such a procedure would appear to be

quite satisfactory. However, the characteristic equations can in general

be solved only by use of finite difference methods, and certain errors are

therefore introduced. In the usual calculations for perfect or equilibrium

gases these errors are known to be dependent on the size of the character-

istic net, Ax/1, where I is a characteristic dimension of the flow field.

The introduction of a new dimension into the problem, namely the relaxa-

tion length TODUo,0 intuitively suggests that the error will depend also on

the parameter Ax/To U00.

Practical considerations in calculating a flow field place a certain

lower limit on Ax/. Thus as the reaction rate becomes large for a fixed

value of Ax/I the parameter Ax/TOU becomes large and suggests large

errors. For near equilibrium flow it seems likely that there is a certain

value of the reaction rate above which the error could be reduced by

switching over to the system of equilibrium characteristics.



The work described in this report was undertaken in an attempt to

provide a better understanding of the errors associated with the calculation

of a nonequilibrium flow field by the method of characteristics. In partic-

ular, criteria were sought that will predict at what large value of reaction

rate the equilibrium characteristics should be used. The analytic solution

obtained by Vincenti, Reference 3, for the linearized nonequilibrium flow

past an infinite sinusoidal wall was compared with results obtained by the

method of characteristics solution of the same linearized flow equations.

Vincenti's analytic solution has the advantage of being relatively simple so

that the algebra involved is not prohibitive. The linearized equations offer

another advantage in that for frozen flow the solution obtained by the method

of characteristics is exact for all net size. All errors can therefore be

attributed directly to the nonequilibrium aspects of the flow.
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2. LINEARIZED EQUATIONS AND SOLUTION FOR A WAVY WALL

The linearized equations of motion for a gas subject to a single re-

laxation process were derived by Vincenti in Reference 3. It was assumed

that the flow field is described by a perturbation of a uniform parallel flow

with velocity U in the x direction such that u = U + u', v = v1,

p = po + p', etc. It was also assumed that the uniform flow is in equilib-

rium. The resulting equations are:

Continuity:

+ .+ I + U =0 (1)
Pco - 7OD 8x

x Momentum:

p LU- + 0 (2)
PO U00 8 X ax

y Momentum:
ev'Poo0 Uo W.. + 0o (3)

Energy:

Co + Oh= o (4)

Equation of State:

dh' (8h dp' + p8hjd' + (8) dq' (5)

Rate Equation:

Equilibrium Relation:

dt= ()Co dp' +(,) dp' (7)

The coordinate system used is shown in Figure 1.

-3-



The quantity q describes the vibrational or chemical state of the gas.

For vibrational relaxation q is the vibrational temperature, and for chem-

ical relaxation q is the dissociation mass fraction. The quantity q is a

fictituous local equilibrium value of q determined by the nonequilibrium

values of p and p.

Vincenti analyzed the flow past an infinite sinusoidal wall by intro-

ducing a velocity potential and solving the resulting third order linear

potential equation. Details of the method and results are contained in

Reference 3. The perturbation velocities are:

Z2 2 e• sin 21 coo 2W (8)

06 +

VI ~ - 21r6 Y

v- = 2- e coo x X9)

The parameters 6 and X are given by

6 7= (1 +k Z (I " eCo)

(1o)
where

/ 8h T U

p q 8p

Disturbances in the flow field are propagated along the lines (dy/dx) I/X,

and 6 is a measure of the rate of decay of these disturbances. In the equi-

librium and frozen limit for supersonic flow these parameters become:

Equilibrium Frozen

6 0 0

2 MFe 41
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3. SOLUTION BY METHOD OF CHARACTERISTICS

The characteristic relations for the linearized Equations (1) through

(7) were obtained by the usual method of solving for a particular derivative,

such as O8u/ax and setting the determinants in the numerator and denomi-

nator equal to zero. For all finite reaction rates, 0 5 1 /r U0 - co, t h e

characteristics are:

along

#Z i tan a
dx F

(13)

dp' p U tan aF dv' - A1-j"-dx0
Co 0

along

where

tan - U 2 t8h6

A= 1h0 (15)

a = tan I 1 (16)

F

Thus the characteristic direction is determined by the frozen speed of

sound for all finite reaction rates. In the linearized approximation the

lines (dy/dx) = 0 are streamlines and Equation (14) is just the rate equa-

tion following a fluid particle.
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For flowthat is everywhere identically in equilibrium, I/ToU = O,

the characteristic relations can be obtained by substituting q' into

Equations (i) through (7) and proceeding as before. The results are:

along

d- tan a
dx e

dp' " pcoUOo tan a e dv' 0 (17)

where

a = tan (18)
Mee

The discontinuous change from the frozen to the equilibrium charac-

teristics as I/TooUo -- + o brings up the question of what errors are intro-

duced in calculating near equilibrium flow using the frozen characteristics.

In equilibrium gas calculations the error which results from solving the

characteristic equations by finite difference methods is known to depend on

the size of the characteristic net, Ax/I. The introduction of a new charac-

teristic length into the problem (i. e., the relaxation length, T0 U0 )

suggests that the error will now depend also on the parameter Ax/ 00 U0O.

To study this error, the pressure at a wall point as calculated by the

method of characteristics, p, is compared to Vincenti's analytic solution,

Pa" A convenient parameter for expressing the error is defined as:

(P3)c - (P 3)a (9
Ap (Pe - PF)max along wall

where P3 is the pressure at the wall point 3 (see Figure 1). This param-

eter is calculated as a function of net size, Ax/i, and reaction rate,

I /rOD OD'All quantities along the vertical line x = and the reference

pressure Ap are taken from the analytic solution, and Ap is given by:

Ap 1E (tan a -tan a (20)
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Applying Equation (13) in finite difference from along the character-

istic 1-3 gives:

P3  P' + P U tan aF (v - V[4) +2 j( i' - ql) + ( q3 -) Ax
00000 00

The term 43' can be eliminated by noting that:

= + (( - 2) (22)

The differential form of Equations (2) and (4) can be written as:

pUo du' + dp'=0 (23)

U du' + dh' = 0 (24)
00

Equations (23) and (24) can be combined with (5) and (7) to give:

d = Ddp' + Edq' (25)

where

D (26)

E ap -Bq(27)
h7

Equation.(22) can now be written as:

Z3' = qi + D(p 3' - p1') + E(q3 - q1
1) (28)

To obtain the pressure at 3 from Equations (21) and (28), the rate

equation [Equation (14) must be integrated along the wall streamline from

2 to 3 to obtain q. It is convenient and instructive to assume that this

integration introduces an error Aq' in qj defined by:

qj = (q31 )a + Aq' (29)
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Substituting Equations (28) and (29) into (21) gives the error in pressure as:

A 00a~FV 0x

- xAx
Ap| 1"-L -"U- Ap

where v ' can be evaluated using the linearized boundary condition at the wall:

A (E A

( l UG cos 2DA9 (31)

Thus the error consists of two distinct parts. The term in { }in
Equation (30) is the error which results from the averaging of quantities

in the finite difference relation along the inclined characteristic 1-3. The

remaining term in Equation (30) is the error in pressure associated with

the error in integrating the rate equation along the streamline 2-3. We

denote these in errors I and II respectively so that:

AP A ApI I

Vincentits analytic solution is used to evaluate the term (Ap/Ap*)1 "
The resulting complicated expression can be simplified by expanding it in

a Taylor series about Ax/ f 0 giving:

1+ K4 +

where

AD I (34)
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The parameters K i and K2 were determined for two values of *:

at o = 0:

K 2 3 tan 2 aF f tan a ) 2  a1 (35)
i 3(tan aF - tan F + 4 tan F (X tan a F) (35

K2 - w tan aF X tan aF)4 + (X tan aF) 3 _ 2(X tan a ) z

23(tan a F - tan ae) F((X- ( F

- 2X tan aF + 1 + (X tan aF) (36)

at 1 /4:

K21T 3  (XtnF 4 _2ktna3 X
F X~a - tan a~)\j a GF - Z taZF

6 +X+
+ 6 + ZX tan a (37)

I 2 ZwT 6 (X tan QF) 5 + 3(X tan aF)4 52 X 2
3X (tan aF - tan ae) 6 +X

32- 4(k tan a F) _ 2(k tan aF) X (38)

In both the equilibrium and frozen limit the quantity (Ap/Ap ), goes to zero.

The error in calculating the pressure by the linearized method of charac-

teristics for near equilibrium flow is therefore due entirely to the error

in integrating the rate equation along the streamline.

In evaluating the term (Ap/Ap)If it is convenient to introduce the

pressure coefficient,

P =

i/2 p U
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such that:

K AX
:, <,>.' (39)

I +K 4 Y- kTODA

where:

K9 = A(E -0-U "  - (40)

A first approximation for q3 ' is:

q3-0) q2' +  x) AX (4i)

The error in q3'1M 1 can be found by expanding q'(x) in a Taylor series about

Ax = 0:

i~ __.+d(j') ,Ax1+.d(42)

ION d2 2
(q 3')a = q2I+ A-dX2 + d I Adx +/2 (2

Subtracting Equation (42) from (41) gives:

I 'z 2~x - 3 )2 L'x3  (I-

AqIlU) . 6 .(L_) a d dx 44 (43)
dx 2

2 2

The derivatives in Equation (43) are evaluated using Vincenti's solution at

x = . This results in:

AIM) z 3  i 2  (Ax1 4

__,,_. :K 7 ( ) -2.j<() -KK ) + (44

T-AP
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where:

at *=0:
z (h)( tan2 aF - 82T47- (45)

2 o (84

K7 cX C88- c, 3 'pC tanZ aF (tan aF - tan ae

Tr re tan 2 aF + (46)

K 8 VO(-_)o ( ) tan2 aF (tan a F tan ae )

Co C

at *=14
2 8P 00 (6 tan2  a + =__ )

* = -h t'% 2+X (47)

k 718o )0 otan a F (tan aF -tan ae )

r ( h tan 2 a F - +
K 8 = Iq)o ahtp tan2 aF (tan a F tan a e) (48)

The error in q3' resulting from integration of the rate equation along

the streamline can be reduced by use of an iterative procedure as follows:

q3(n) q2' +( .(n € (50)

To obtain the error in q3
'(n) we rewrite Equation (42) as:

(51)

-11-



and expand dq'/dx in a Taylor series about Ax = 0':

Aa  + (52)

Solving Equation (52) for the quantity in [ and substituting this into

Equation (51) gives:

(qjt)a= qjt + AX + 3 A  TZdl AX3 53

a 2

Subtracting Equation (53) from (50) gives:

,(n) = 1 5 dq A- + - d, ), Ax3 +.. (M)

The rate equation, Equation (14), can be used to express Equation (54),in

terms of the errors in ' and q' resulting in:

Aq,(n) Ax [ (n-1) _ Aq,(n-I I N, 3
00 00dx /2

The error in q' after (n - 1) iterations is obtained from Equation (25):

,(n- ) = DAp(n-i) + EAq,(n-l) (56)

Substituting Equation (56) into (55) and using the parameters introduced in

Equation (44) for (d 3 q'/dx3 ) 2 and (d4 q'/dx4 ) 2 gives:

Z'&Q,(n) (n-t) t&%AqI(n )
Tc~AP =K'C") - + K6 --) (n)+ K '&x -) + - K 7(.4..

GO (57)

where:

K 5  OT - (58)
5 Co roca-
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KI(E

( 00 00

Equation (57) can now be used with Equations (39) and (44) to find

(Ap/&p)if after an arbitrary number of iterations. The total error in

pressure after each iteration, (Ap/Ap*)(n), is given by:

A +() (60)
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4. NUMERICAL RESULTS AND CONCLUSIONS

The results of Section 3 are applicable to a gas in which either

vibrational or chemical relaxation occurs. Numerical values of the error

parameter were calculated for a diatomic gas subject to vibrational relax-

ation for which q is taken to be the vibrational temperature, T. The
V

equation of state and the enthalpy are given by;

p pRT (61)

h = cpT + fci d T. (62)

where c. is the vibrational heat capacity. The parameters inSection 31

become:

c
K I ~_tan2 a -1 . M 2 1K4=F (63)

p 00 GG

K5 =. M. -u (64)
OD 00 00

~ A (65)

where c. is ci(Ti) evaluated at the free-stream equilibrium temperature,

T . Results are shown in Figures 2 and 3 with initial conditions taken
along 4 = 0 and 1 = /4 for various numbers of iterations. The limit

error curves obtained after a large number of iterations are replotted

in Figure 4 for comparison.

The calculation procedure using the frozen characteristics is seen

to be convergent even in the limit of equilibrium flow. The error con-

verges to a limit error curve after a number of iterations and approaches

zero with decreasing net size. Since all errors are of order (Ax/ )2 or

higher, the error in calculating a flow field for all values of J/r 0 U and

n can be made arbitrarily small by decreasing the size of the character-

istic net.
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It is noted that for I/TOUC0 ---* co only a single iteration is required

to reach the limit error curve. This can be explained by recalling that in

the equilibrium limit no error is introduced in the calculation along the

inclined characteristic i-3, i.e.

lim A i 0
- _ I .. (o A p

Thus the equilibrium limit of Equation (30) after (n - 1) iterations is:

lim &p,(n-1) = . (E - 1) Aq,(n ' l) (66)

Substituting Equation (66) into (56) gives:

AI(n-) AqI(n-l) as " O  (67)

From Equations (55) and (67) we see that, in the equilibrium limit, Aq (n)

[and therefore AP,(n ] is independent of the number of iterations for n -a z.
This behavior is a property of the linearized characteristics and cannot be

expected to be valid for the general method of characteristics.

In Figure 2, it is noted that increasing c iCO/c p (i. e., increasing the

energy associated with the relaxation phenomena) results in a decrease in

Ap/Ap*. Thus the effects of relaxation on the wall pressure distribution

increase faster with temperature than the error introduced by the finite

difference method of calculating these effects.

If the equilibrium characteristics, Equation (17), were used to cal-

culate p3 as I/T oUo -+ a the error would be identically zero for all net

size. Thus there is some large value of 1/T0Uo at which, for a given

net size, it would be better to calculate the flow field using the equilibrium

characteristics. In Figure 4, however, it is seen that near equilibrit'm the

error is strongly dependent on the location of the initial line *. Th a

-15-



due to the dependence of the error on the gradients of the thermodynamic
properties in the flow field. Thus the parameters Ax/I and i/T Uc are

not sufficient to establish even approximate criteria for switching over to

the equilibrium characteristics as 1/-r U becomes large.
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